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Abstract

The boundary value problem of heat conduction in a three dimensional,

laminated plate is approximated by a hierarchy of two dimensional models.

Computable a-posteriori indicators and estimators of the modelling error in

various norms are derived and their local spectral and asymptotic exactness is

proved. Sharp estimates for their effectivity indices are also obtained.
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INTRIKDITI ON

The modelling of the elastic behavior of thin objects has a long history.

The main idea is to replace the particular three dimensional problem by a two

or one dimensional one, which is easier to solve. Such approaches were

already proposed in the first half of the nineteenth century by S. Germain [11

and G. Kirchhoff [2]. Since then many approaches were proposed. For some

surveys we refer for example to [3] and [4]. The derivation of these models

is based on physical considerations, a mathematical analysis of various

degrees of rigor or on the asymptotic analysis of the three dimensional

problem as the thickneis of the structure tends to zero. We refer to [51 and

references there for this approach. In general all the methodologies can be

understood as the application of a dimensional reduction approach.

This approach leads to an approximate solution of the original higher

dimensional problem. Hence an error estimate is needed. There are presently

various a priori error estimates (see e.g. [6], [7]) or estimates of

asymptotic character (see e.g. (5]) available.

Nevertheless in today's computational environments we need

a) an accurate and computable a posteriori estimate of the difference

(error) between the exact solution of the original three dimensional problem

and the dimensionally reduced one, the modelling error, and

b) a procedure which leads to the construction of a hierarchy of

dimensionally reduced models which allow to solve the original three

dimensional problem with a prescribed given tolerance or accuracy and this

procedure has to be adaptive (we remark that in contrast to the classical

approaches, the adaptive approach leads to models which are not uniform

through the entire domain).

As in today's adaptive finite element approaches, the fundamental part of
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the adaptive procedure are a posteriori error estimates based on local indi-

cators which should be of high quality. By this we mean that the estimator

and the indicator have to be robust, i.e. their effectivity index should be

reasonably well bounded from below and above for a large class of solutions

and should be asymptotically exact for more restrictive classes of solutions.

The present paper addresses these questicns for the heat conduction

problem on a thin domain when the material is homogeneous or laminated. It

gives a computable a-posteriori estimate for the modelling error measured In

the (weighted) energy and L.-norm. The indicators are local and heitce very

well suited for adaptive approaches. Upper and lower bounds of their

effectivity indices are also obtained. The adaptive procedures based on this

approach will be discussed elsewhere (see e.g. (81). Let us now outline the

contents of this paper.

In Section 1 we introduce the formulation of the problem and the main

notations. In Section 2 we introduce the hierarchic models and some of their

basic properties. Section 3 addresses some abstract functional analytical

results which will be employed later. Section 4 introduces the a-posteriori

estimator and proves Its basic properties, especially the upper and lower

bound for its effectivity index. Section 5 analyses the asymptotic exactness

of the estimator as the thickness of the plate d--*O and Section 6 analyses

the spectral asymptotic exactness when the degree of the model increases.

Sections 4, 5 and 6 address the estimator for the modelling error measured In

a weighted energy norm where the weight Is exponential. Section 7 addresses

the error estimate for the L2 measure of the modelling error. Section 8

generalizes the estimator to laminated materials and the final Section 9

presents a simple numerical example to illustrate the sharpness of our

estimates.
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1. Notation and Problem Formulation.

By w c R2 we denote a bounded domain with a piecewise smooth boundary

7 satisfying the cone condition. With a positive thickness parameter d and

w we associate the three dimensional domain

0 = w x (-d/2, d/2)

with lateral boundary

r x x (-d/2, d/2)

and the faces

S= {(xlx 2 ,x 3 ) I(xlx 2 ) ' w , x3  = ± d/2}.

In fl we consider a heat conduction problem with prescribed heat fluxes f±

on the faces, i.e.

Lu = 0 in 0,

(1.1) u = 0 on r,

Du = f± on R±.

where the operator L is (in the sense of distributions) given by

(1.2) -Lu - (a(r-) •3 + b V. (C(x)Vxu],

where V= x , x = (xlX 2 ); a(*), b(-) e L¶(-1,i) are even

functions independent of d and satisfy

(1.3) 0 < A < a(z) , 0 < B S b(z)

The matrix-function C(x) is symmetric and uniformly positive definite, i.e.

there exist constants 0 < C 5 E < a so that

(1.4) CI•I 2 S TCx) S CII2

for all C a R 2 , x E •; C(x) has C 0 coefficients and the boundary
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operator D u is the (distributional) exterior conormal derivative on R±.

To cast (1.1) Into the weak form we introduce the Sobolev space

(1.5) H :- {ue H(I)Itrace u-0 on r}

and define the bilinear form B(-,-) : HxH--*P and the functional F(.)

H--+R by

(1.6) B(uv) fJ L- + b ( (Vxu)Tc(x)VV dx.dxldx

and

(1.7) FO J {(Xx v ) + f(x 1  )}dxd

respectively.

Then the weak form of (1.1) reads: Find u e H such that

(1.8) B(uv) = F(v) Vv e H.

Under the assumptions (1.3), (1.4) there exists a unique weak solution

of (1.8) provided that

(1.9) f+, f- a L2(w)

(this assumption could be weakened, but Is sufficient for our purpose).

2. Hierarchical Modellinz.

We will approximate the boundary value problem (1.5)-(1.9) by a sequence

of two dimensional problems on w, the hierarchy of plate models, which we

now define.

Denote by

(2.1) 11. -wjw 4 : 1 WI , W sI n1

a collection of n domains with plecewise smooth boundaries 8wI such that
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n
W I A = if i - J and W= U Zi (? could be, for example, a

i1=

triangulation of W). For a vector q of nonnegative integers

(2.2) q = {ql,.. . q, k 0

and a dense sequence

(2.3) {1j(z)}1 c H1(-1,1)

J=o
of linearly independent functions we define

(2.4) SUP, q) f= u e H =1W L ui~c 1 , V j-]'' E?

J=a
Then S(P,q) c H and the (?,q)-plate model is the boundary value problem:

Find u(1',q) e S(?,q) such that

(2.5) B(u(P,q),v) = F(v) Vv e S(?,q),

i.e. u(0,q) is the (energy) projection of the weak solution u onto

S(?,q). Hence (2.5) constitutes an elliptic bondary value problem on W
( 4)

for the coefficient functions Uy) txl,x 2 ) in (2.4).

The selection of the functions # in (2.3) completely determines the

(?,q)-model and has been investigated in [91, from where we quote the

following results. Define *2J(z) = *2j(-z), J = 0,1.... recursively
1

(2.6) I a(z)*;(z)v'(z)dz = 0 ,
-1

(2.7) I a(z)ýj (z)v'(z)dz + ] b(z)* 2 j_ 2 (z)v(z)dz - 6 1 (v)
-1 -1

for all v e H 1(-1,1) , J E IN, where
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(v) - v(1) + v(-1) If J -,
IV 0 else

and 2j+l (Z)m -* 2 j,(-z), J - 0,1.2.... by

1 r1

(2.8) LI a(z)W2 j+l (z)v'(z)dz + J b(z)* 2J-l(z)v(z)dz- i(v)
1 -1

for all v e H1(-1,1), j W H, where

(v) (1) - v(-1) if j - 1

V 0 else

and

(2.9) -_l W 0.

Remark 2.1. It is not hard to see that (2.6)-(2.9) determines the sequence

uniquely (the nonunlqueness in the solutions of (2.7), (2.8) Is taken care of

by requiring the compatibility condition in the subsequent step). Moreover,

It was shown In [9] that

(2.10) {• (z)10 Is dense In H (-1,1) a

Remark 2.2. If a(z) and b(z) are constant, W3 (z) Is a polynomial.

Table 1 lists the first four *J.

3 Sz)

0 1

1 z

2 (3z 2 
- 1)/W

3 (z 3 
- 3z)/6

4 (15z4 - 30z2 + 7)/360

Table 1. The first OP(z) for a - b - 1, 0 : J S 4.
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If a(z), V(z) are plecewise constant, (z) Is a piecewise polynomial.

This !. the situation for sandwich materials.

With the choice (2.6)-(2.9) of *j(z), the modelling error

(2.11) e(JP,q := u - u (?,q)

is, for JP - {u and q - N, of optimal asymptotic order as d--O,

provided the data f+, f- are sufficiently regular In w and satisfy

certain compatibility conditions on the edges ar = 7 x {4d± which ensure

the absence of boundary layers (see [101, for example). We emphasize at this

point that due to (2.10) the error e(P.q) will also tend to zero for fixed

d > 0, if min{q I--*m In contrast to the error In models obtained by

asymptotic analysis.

In the following sections we will derive computable a posteriori error

estimators for the modelling error measured in the energy norm

(2.12) Ie(F.q)I(E) = Be,e))1/2

in terms of the residual data on the faces R±. The following property of

e(r,q) will prove to be important.

Theorem 2.1. For every (P,q) we have

(2.13) Cd/ b C-7)- e (xl,.x2.x3dx3 - 0 a. e. (Xl, X2) Q w.

d/2

Proof. It follows from (2.6) that Oo(z) - const. Due to (2.5) we have

B(e(?,q), v) - 0 Vv a S(•,q)

and, since X(X)W o-•] 0 S(?,q) for all (?,q), we find with Fubini's

theorem

7



(2.14) O = IWVXX(xl' x2'C(xl'x2) Vx C2-dV2 b •~L--Je(x' 1x 2 , x3)dx3 dxIdx2

for all X E •(){u e HI(W)I trace u on = 0}.

Let

ONl,2 = d/ br-?)e(xl,x2, x3)dx3.

d/2

Since e * H, e E1(Q). Using X = i in (2.14) we conclude that • = 0

which was to be proven. o

We shall derive in Section 4 computable guaranteed upper estimates for

the modelling error (2.12) which are asymptotically exact. Moreover, our

estimators also give information about the local contributions from WI to

fleiE(Q). As a tool we shall use certain exponentially weighted spaces, which

we analyze next.

Remark 2.3. Here and in what follows we assume that the elliptic system (2.5)

of differential equations for the unknown coefficient functions U(i) is

solved exactly. However, usually only an approximate solution can be

obtained. Our results remain nevertheless valid, if the approximate solution

has a sufficiently high accuracy. In computational practice one usually works

with a finite element approximation of U i) In this case the a posteriori

estimation of modelling error can be used to determine the desirable accuracy

of the finite element approximations of U i)
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3. Some. abstract results.

Let H1 , H2  be two reflexive Banach spaces furnished with the norms

I and 1.02V respectively. Further, let B(u,v) be a bilinear form

defined on HI x H2. We will call the bilinear form (C,7)-regular If there

exist constants 0 < C, V < c so that

(3.1) IB(u,v)l S Cgug1 Ifvfl2 ,

(3.2) mta sup IB(uv)l Z 7,

Nul 1=1 OvIf2 =1

(3.3) for any v 0 0, v e H2, sup IB(uv)l > 0
lu 1=1

Bilinear forms satisfying (3.1) - (3.3) have the following properties.

a) Let f e (H2 )' (i.e. f is a bounded, linear functional on H2 ),

then there exists exactly one u e H such that

B(u,v) = f(v), Vv e H2.

b) If

(3.4) sup IB(u,v)I S A,
Nv1-2=1

then

Iul 1 s

Let us consider now some special cases which will be important later.

Let 0 < O(x ,X 2 ) • W l'(M) denote a (strictly positive) weight

function In w. We define

H V {e * H le satisfies (2.13)1

and furnish H with the weighted energy norm defined by

(3.6) Mel2  V 7F,_a• fex + b CT_ VeTCVxdxd 2 dx3 .

The following Lemma will be used repeatedly.
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Lemma 3.1. Assume that u e H . Then

(-d/2 ,2rý)u2 ,2,3% , 2d2  J
,d/2) -x(-d/2,d/2)

for all open subsets r 9 w. Here A is given by

1fa(z)($') 2dz
I 1 -
A2 eHI(-1 1 1 b(z)o2 dz

and the Inflmum is taken over all

S e H I(-1 ,1) {n bI b(z)b (z)dz = 0}.
~' E H -1,1)1

Proof. Assume that u e CO(U) n H . Then we have for all x e w the bound
9

-d/2 -d/2 2

by the definition of A and a scaling argument. Multiplying both sides of
2

(3.8) by V and integrating over r we get (3.7) for u and a density

argument completes the proof. 0

2
Remark 3.2. For a - b - I we find A - 2 If * Is symmetric In z

1
then A-

Theorem 3.1. Let 0 < 9(xlX 2 ) * Wl' W) and assume that

I mx2 /V21
il-,2 1 I/ Lm({)

Define H, - HF, H2 - H1/,. Then the bilinear form (1.6) is (1,7) regular

on HIx H2 with

10



(3., 9) ko ;-0(1- do A] Q [,2 I+ d i2 AQ (I+ dAU A -1/2

Proof:

1) IB(u~v)tl < Jul V Illl/V follows immediately from Schwarz' inequality.

2) Let us show (3.2). For u e H define v - Vu. Then v e H1/V

and

V v - ,2xVu + UVx(V). 2 )2 8u

Hence, denoting the volume element by dx, we find

(3.10) B(u, u) - I ul 2 + Ja lb r- JU V (V2 )TC(x)vxu} dx,

and we estimate for every c > 0

lb J -ý ubi 7 (V 2 )TC(x)Vxu} dxj

SQ V/ý/21j I~ Jb C-]2V d x b 1- J , Jx uTC(x)Vxu dx}.

Utilizing Lemma 3.1 with r - w, we arrive at

2dx

f{A 2 d 2 J1,2,xrJ( u)12 dx+1--a 18-ij

"CIf 2b x]VxUTC(x)Vx dx

Selecting c - Ad yields

B(u, v) Z (I - d AQ ) HuH2

V



Further,

2 2 2V 2 ~ 2x3Vr 8V 12 TCX V2

IVl Jul +2d IQIPab-II-1d)

: 9 Ju 2J+ d JE' Xl2

~ I + dvý F AQ[I + d%'FE A) Jul 2

from where get (3.9). 0

Remark 3.2. We observe that

2 =1,2 Fxl/(

and, from (3.9), we can select V In particular so that a : QAI-' d < 1

and get

(3.11) • (1 - a) (1 + 2&(1 + 2a))-1/2

4. A posteriori estimation of the modellina error.

In this section we assume that the (P,q)-model (2.5) has uniform order

q and that its exact solution u(P,q) is known. We will be interested in

computable estimators for (2.12), the modelling error in energy norm. To

avoid obscuring the main ideas behind technicalities, we assume throughout

this section

(4.1) a(z) = b(z) - I , C(x) 1 01]

i.e. L in (1.1) is the Laplace operator and D - a/8n is the outside

normal derivative. All results apply with minor modifications In the proofs

12



which we will present in Section 8 also to (1.1). It is convenient to write

U=M 1 u2  where

(4.2) uI(xN x2 ,x 3 ) - IuN(xxV, - xY), u2 (xlx 2 ,x3) - u2 (x1,x 2 , - xY).

The u satisfy : u Hli such that

(4.3) B(ui,v) = F1 (v) Vv e Hi, I = 1,2

where

Fl(v) = J fl(XIX2)(v(xl,x2,d/2) - v(xl,x 2 , -d/2)) dxldx2

F2 (v) 1 J f 2 (xlx2)(v(xl,X2,d/2) + v(x 1 ,x 2 , -d/2)) dxldx2

(4.4) f1 N - 1 1+ 1

,f - f )(,x 2 )'f 2 (x,,x 2 ) - 2 (f+ + f )(x 1 1 x2 )

H I fu * H I u is antisymmetric (symmetric) in x3 for I = I(I=2)1.

Obviously, the spaces HI and H2 are orthogonal In energy, i.e.

(4.4) B(u,v) = 0 V u e H1 , Vv G H2 ,

and u(?,q) - uI(91,q) + u2 (01,q), each of which can be obtained by energy

projection of uI onto

(4.5) S (?,q) :- S(rq) n Hi, I = 1,2.

Further, from (4.4) we get also

(4.6) 2 l 2 2(4.6 le(',q~E(Q) I [e(~)E(Q) + e2( q~E(Q),

where e (Iq) - ui - uI(9,q), I - 1,2.

Since S(11,q) in (2.4) depends only on spani#( (Z)), " Uq(-1,1) (seei-a q

13



Remark 2.2), we will assume below for convenience that

(4.'7) 0z) W=- L (Z) ,

where L denotes the Jth Legendre polynomial on (-1,1).

All our a-posteriori estimators 9 for (4.6) are of the form

1

(4.8) S(u1(3,q)) = i1 (xlx2)[ dxldx2 , I = 1,2.

Here v)I(xl,x2) is called indicator function.

Let IoI be any norm on H and 9 In (4.8) an a-posteriori error

estimator for He(F,q)|. Then we define the effectivity index 8

corresponding to 9 and 1o| by

(4.9) 8 := (u(01,q))
le(?,q)I

We say that 9 Is a guaranteed upper estimator, if 8 > 1 for all u. The

estimator 9 is (K,,K2 )-proper with respect to a class T of data, If

0 < K 1 :5 8• :52 < 'N Vf e T.

Further, 9 Is asymptotically exact on T If

(4.10)' 8-. 1 as d 0+ Vf e T,

and 9 Is spectrally exact on T If

(4.10)" 9 ) I as q - f * T.

Finally, 9 Is locally asymptotically (resp. spectrally) exact on T, if

(4.10)' (resp. (4.10)") hold with the norm |o| defined in (3.6) where the

weight function V(xl,x 2 ) Is given by

V~x X2):= exp {Ix I-xýI + Ix2-xýI}. 0 < p 5 1' 0 S a £ /(AO

and (x.x.) * w Is arbitrary.

14



We begin the analysis of the estimator 9 for the case 7 - {uW and the

energy norm and consider the L2 -norm later in Section 7. Whenever the order

of the model is uniform throughout w, we shall omit the index 7. Due to

(4.6) we can derive the indicator functions -q,, I = 1,2, separately. We

start by observing that, due to Theorem 2.1, the errors eI(q) e HV, I =1 ,2,

defined In (4.6) satisfy

(4.12) B(eI(q),v) - RI(v) Vv e H

and

(4.13) B(e 1 ,v) = 0 Vv e S1 (q)

where

Ri(v) = IJr 1 (xl,x 2 ) (v(xl,x 2 ,d/2) ± v(xl,x 2 ,-d/2))dxldx 2

+ IJv(xl,x 2 ,x 3 ) Au,(q)dxldx2 dx3, I - 1,2

and -,+ correspond to I = 1,2, respectively. Here

8u I(q)
(4.14) ri(xIx 2 ) = f'(x,'x2) - 8n (xlX 2 ,d/2), I = 1,2.

Remark 4.1. For f I e Hs(w), s a 0, we have

(4.15) ri E Hfin(s,1+0) (M)

where c > 0 is determined by the maximal regularity of the solution to the

Dirichlet problem for A in u (e.g. If w is a slit domain, 0 S c < 1/2).x

The unknown coefficient functions in (2.4) satisfy the elliptic system

dAAxU + BU f - c'f- In

U - 0 on 8u.

The matrices A and B are independent of d and given by

15



1 1

AiJ f 1 itjdz- BIj = i-fj dz

and

C W 40O1), ... I (±I)) T

We calculate next a simplified expression for R (v) which we will use

repeatedly below.

Lemma 4.1. Let 1 r1, q = 2m+1 or I = 2. q - 2m then

RI(v) - I r 1 (xlx 2 ) {v(xl.x 2 .d/2) ± v(xlx 2 ,-d/2)

(4.16)

-J v(x 1.X2.x3) -d- [Lq+ I[]dx x dx2d -

Proof: Let I - 1, q =2m+1. Then

2m+ 1

(4.17) Aul(q) = E AIj(x 1 ,x2 ) L, L__
j=o

-1-

for some Atj e H-1(w). To determine At Ij we use

Rl(V) V 0 Vv e S 1 (q) v H2 .

We select v = V(xIX 2 ) L2 k P) e H2 with arbitrary V e il(w) and get

AI. 0 for even J. For j - 2k+1, 0 S k S m, we find

o..JV~x.x2)2r 1 Al~~l ~J [~k~z~dz dxdx10 ' V xI-X )1 r ,2 +1 2 L,+ ) 2di d d 2

Since we get V c El(w] is arbitrary, we get

A1 2- (2(2k+1)+1) r

16



(note that due to Remark 4.1. A1. 2 k+1 * L 2M).

Hence

AU I -( rt(xl'x2 ) E (4k+3) L2k+ I

k-O
-- r V 1x2) id 6m

For I - 2 and q - 2m, one proceeds analogously. 0

We derive next the estimator C. We start with the observation that from

Theorems 2. 1, 3. 1 we have the bound

IB~u1-ui (q}, v) I
(4.18) O Iut - ui(q)ll < sup -B~ ----I--vl , i 1 1,2o*1 v1 1/p 1,/

where O is as in (3.9). With (4.12) thus

2 2 (Ri vM) 2

2Tolel(q)l• sup 2v0 Ie1 Cq°1l l '1/9 IVll/ 9

~ (Rilv) )2V O*1v1 /1,9  I/
: supo,0nVIl/V, • 2(8v sl2 (x ,x2,x3 )cd

su Li 1 01[v] dx~d- 2)

where

[(iIv]CN(X 2 ) :

vlx1,x 2 ,d/2) ; vlx,'x2 ,-d/2) - vlx 1'x 2 'x3 ) X +L dx3(4.19) rd L(-

Hence we obtain, using Jensen's inequality, that
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(4.20) 021 e(q)11 < [ r2 sup (Si1v,1 2 dxldX2
O*vGM

where the supremum Is taken over

(4.21) M :=L 2 (w,Hl(-d/2,d/2)) n {vjJ v dx. - 0 a.e. (xlX 2 ) , U}

(see (111 for the definition of anisotropic Sobolev spaces).

Since 1 Is strictly concave and upper semlcontinuous on M, there

exists a (unique) maximizing element vt e M which satisfies the

Euler-Lagrange equations
2•

v d_(_LdIn

av, If I { 1-1= 1,
8-3 2 +1 if i - 2.

Hence we find that v is Independent of (xlx21 and given by

• d Lq+21fqk
(4.22) 2 2q+3

and

(4.23) *i[vJJ ]d : dCiq

Referring to (4.20), we have proved

Tl•orem 4.1. Assume that f1 In (4.3) is square integrable over w. Then

the error fleI(q)lE(M) for the hierarchical model of uniform order q (i.e.

S-{W} and odd q k 1 for every i - 1, q even fo- I - 2) can be

estimated by

(42)2 N 2 ~d I' 2 2 d(4.24) 70 1e (q)| 1 :5 ý- r, dxld2
0' 1  Vq 2q+3j 9 r

where p Is as In Theorem 3.1 and
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OuI (q)
rI(xlx 2 ) , f1 (xl,x 2 ) 8x3 (xl,x 2 ,x 3 ), I - 1,2.

Based on (4.24) we define the Indicator functions

(4.25) Iliq (XlX 2 ) /q+3 j(x1 x2 ) ri(xl'x2 ). i 1,2

and the estimates M(uI(q)) defined in (4.8) are, according to (4.24),

guaranteed upper estimates for le 1 (q)IE(Q), since V a 1 implies -0 1 in

(3.9).

Remark 4.2. We emphasize that l iq is very easy to compute, especially for

low order models. We find in particular for I = 2, q - 0 that

2 N) 2
720(x1 -x 1 (V(xl,x 2 )f 2 (xl,x 2 ))

Selecting V m 1 implies Q - 0 in Theorem 3.1, whence we obtain -O = 1 in

(3.9). Thus (4.24) yields with r 2 - f2 - (f+ + f )/2 the estimate

2 d [*++-H2

(4.26) le 2 (O)I2(O) d 1-f +f ( 2

In the subsequent sections we will demonstrate that the estimators C(ut(q))

based on (4.25) are asymptotically and spectrally exact.
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5. Asymptotic exactness of the error estimator.

Before demonstrating the asymptotic exactness of C. we introduce some

notation. Throughout, V will denote the exponential weight function (4.11).

Further

(5.1) Irl2, 9 : f rI2 V2 dxldx2

Finally, we introduce the class of data

(5.2) T i :- ifleither ri(f) - 0 or Iri 1l.V /Irio, : 13 <e).

The main result on asymptotic exactness is

Theorem 5.1. Let Si' I - 1,2 denote the effectivity indices (4.9) with

respect to the weighted energy norm (3.6). Assume further that 9 = { L), i.e.

the model order is uniform. Then for i 1 1,2 holds:

2 11. If f 1 L2(w) we have with A 1, , A 2 -,, that

(5.3) S I Ki1 :l 11-A I d Q) 1 + d+-AQ(+ d V'W-AiQ)J , i - 1.2

0
2. If fi* T then

(5.4) Si 1C +i2A (-12 + dQ2))J/, u 1,2

where D is given byq

(5.5) D 1
q (2q+3) 2 

- 4

Moreover, If V a 1, the factor 3/2 in Ki 2  can be replaced by 1/2 and

Q - 0.
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Proof: 1. The bound (5.3) follows immediately from Theorems 4.1 and 3.1, If

we note that A, - 2/w and _N2 - 1/w in Lemma 3.1 with a - b - I since

the infimum there Is taken only over odd, resp. even e H I(-1,1).

2: To show (5.4), we select In (4.12)

v v - = vi(x) rc(xi, 2 ),

with vI as in (4.22) and get with (4.23) that

(5.6) R (v) - dCq J 2 v2 dxldx2  W B(el(q).v) S |el 9 UVel/ 1  .

Since

IVx, 2 < ,2{13V2IV V12 + 61I- VxV,21

we find

Iv - 2J , x2 +I. f2 v ( 2 ] x}d

:5 J01 {321V .2 + 61-1 2 jxV12 92 (j 2}+ lv ~ + dx'dx2 dx.

12J V 2 i V xVril 2 + 61Vx1 2 ir212 v 2 21r112 dxldx2 dx3 "

Since

-'i (l 32 - dCq

and

d/2J-/ (v I)2 dX.3 - .5 dCq q~

where D. it a in (5.5). we get with IV xp s Q2 /2
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(5.7) fvf1/, < dCq Ir I , + 'd CqDq{Ur, 1, + or,,}

For every c > 0 we have from (5.6)

2d CqRrj 1 2 S Ce12 + c-i I1 2

If we select co > 0 so that

(5.8) -I HvK 2 S d Iro (2(ui))
0 1/V q 1 0,9

we arrive at the desired (lower) bound

(M(ul(q)) 2 < c0 HeI(q)J2 , I = 1,2.

We estimate cO. Using (5.7) and (5.8) gives

2 2
1/V3 2 r2 1_ _

0 = + ndD Q +
0 dC jr 12 2 f Idqri 102,p ril2,,j

Using that f e T, gives (5.4). o

Remark 5.1. For f e T and f = Pd-p, p < 1 and the weight function

p defined in (4.11) with p < 1 we have from (5.3) and (5.4) that

8 - 1 for d - 0+

Thus El based on (4.25) is a locally and asymptotically exact estimator for

the modelling error. o

The local asymptotic exactness not only ensures that the indicator

functions -lq in (4.25) give a good estimate of the global modelling error

in energy norm, but also for subdomains u of w that
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q(P;u) + fI (x 1 ,x 2 ) dxldX2
dist(xI, x2 ; ý)<dP

Is an asymptotically exact measure for the local contribution to the

modelling error at ý.

It further guarantees that a local increase of the model order in

will reduce the error In & while leaving the error elsewhere in WZ

unchanged -- a feature typically not found for elliptic equations and a

consequence of the fact that 0 is a thin domain. These observations are the

basis for the adaptive selection of the model orders on subdomains of W [8].

6. Spectral exactness of the error estimator.

Our purpose in the present section Is to show the spectral exactness of

the errcr estimator 9, i.e. that K11I K1 2  In Theorem 5.1 tend to one as

q--+o at fixed d > 0. While this Is not hard to establish for Ki2  In

(5.4), the corresponding proof for K11 requires a more careful analysis of

the constant A in Lemma 3.1.

We denote by vk(xlx 2 ) the eigenfunctions (orthonormalized In L2(}))

of the elgenvalue problem

(6.1) -A~k = A k~k In w , Vk = 0 on O& ,

k = 1,2,3... and the eigenvalues are enumerated with respect to increasing

magnitude and counting multiplicity. We collect some of their properties that

will be needed later.

Lemma 6.1. Assume that w c R n, n - 1,2 and that 8O is smooth if n = 2.

Then 17 X I > 0 is a simple eigenvalue and the corresponding eigenfunction
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V1(x ,X 2 ) > 0 In W.

2. For all k * M, and all (xIx 2 ) E W,

IV 
'/2 If W C R I

(6.2) Nk. £S wcR 1G
16.. Cl )Bk ' 0 k + + cR 2ICO(W) If W •

Proof. Assertion 10 is well known. Let us prove 20. In the case n - 1

the assertion follows from the explicitly known elgenfunctions. We consider

therefore n - 2 and claim that

8C1 1 ( W) > 0

To prove it, we note that V1 > 0 In w and hence the function u =

satisfies

Au - X lfI k 0 in w , u < 0 In w, u - 0 on 8w.

Now we can apply the maximum principle [12, Theorem 2.7] and find that

aun (xo) > 0 for all x0 e 8a from where the claim follows.

Now, since 7 is smooth, there exists cO(w) > 0 such that w :

ix G ldist(x,7) > c} Is smooth, too, for 0 < c < cO. Hence we can

estimate, possibly after reducing co,

1x1 (u 2 C1Mc on

and get

2

2jkI C2 1) IV
$ S 2 WCl2 ( w) 'V g k l L 2 (w )

i.e.01L )

(6.3) IC 3 (U'V Z I1 L2 (w)'a2C 34
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In r:- C "C we introduce the boundary-fitted coordinates (p.S). Then w

have from Taylor's formula that

"1Vk(O-s' 1 PF.,-- (0,s) + O(p2 tI rl:n ux)I 1
Vif(P,s)I - 091 2 <4 ) 4 X 1

Ipg- (O.s) + O(p -1xPIjn (x)

C4 (w) a'k I C4  a

s u I an CS1  IOn H,1/2+6()

<5 C6(W 1 01lkH+28 (W)

where C6 is independent of k, but depends on a > 0. Hence

<. ck1l =1+8 1+a
(6.4) Ill r-d C7(w) I •kI 2  = C7(o) A.i

Combining (6.3) and (6.4) completes the proof. 0

With the eigenfunctions

(6.5) ~ 1 a (, sin(AIR A1 i 2

and

(6.6) 02m (L1 J Cos (A20 A2) Ex~

a - 1,2,3,... , the elgenfunctions for -A on 0 with homogeneous boundary

conditions on r and R. which satisfy (2.13) are given by
(6.7) fiks :- 'Pklxl'x2)*i,

with the corresponding elgenvalues

(6.8) A A Ak+4d2 A 2 I - 1,2 k, m e H.
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The sequence of eigenfunctions # km Is dense In the space H defined In

(3.5). Therefore we have In particular for the modelling errors eI the

expansion

(6.9) eI - E im 1  km , I - 1,2
k, neIN

where the coefficients can be determined from LIemma 4.1.

Lemm 6. 2.

= [d 2 -1-

with pik and 97 as in (6.10) and (6.11) below, respectively.

Proof. We recall (4.12)

B(e 1 ,v) ,- RI(v) Vv e H I - 1,2,

where, with (4.16) and integration by parts,

RI ( ) Lq+1  dx3dxldx2
Ed -d/2

Since

B[.Ika, #j 1n) _~ (d 2 2~]i8

we obtain with

(6.10) Pik rlJxlx2) 9k(xlx2) dXldx2

and
1

(6.11) 3• J ',m(z) Lq+,(Z) dz
-1

the assertion. a
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Our purpose is to estimate the dependence of A in Lemma 3.1 on the

model order q since

(6.12) inf inf3 >
(Xl,2)G el d/2 (eI)2 d3 (A1I (qld) 2

where the infimum is taken over all e6 of the form (6.9). We compute

d/2 2
-_d/2e ) x-

3d +' L2X - 1 r( d2 ll i2

(6.13) (,_ 3k, I + !LJ- -1 I)

k,m t, aAim P in in

and

To obtain a lower bound for (6.12), we estimate (6.13) from above and (6.14)
2 2

from below (pointuise). For (6.14) we have with a - 1 + d lll
Xf- 2i)_ 2 p )

r "2

1P1  I91 d.-1) p In _

d/ e) d-32:2 2 1 i I Ik

kZ2 ill11
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ka In
d 2 2 •q)

(6.15) 
d -2 2 I 2 1 (1 - 20 - n)2

where we assumed that p11 * 0 and defined

(6.16) *: C(W) I( + 'a jk) 0 iI

with C(M) and ek as In (6.2).

Corsider next the upper bound for (6.13). We estimate analogously as

before and get

d 2 3 2~ -2Z )2

(6.17) (elI 2 dx3 < 2] iq,1 12
1 1 12 a (1 + 4)2

-d/2 (Ptm)

I - 1, q = 2m + 1 or I 2, q = 2m.

Now

1

-1

=- m fLq+l(dz im Lq+I de z=tl
-1

= I M J In f Lq+l(C)dt dz

where we used that 0 ('1) = 0 and - M I" Hence ( m

are the Fourier coefficients of the antiderivative of Lq+1, i.e. of
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(2q + 3)-1 (Lq+2(z) - Lq(z))

Therefore

- (Bq )2-

(6.18) 1 .2 -K(2q÷3)-2 IL - LI1
( )4 q+2 L (-1,1)

-K 2 4

((2q+3)_ 4)(2q+3)

and analogously

-(13q 
) 2(Inq) KIL+ 1 U22 2

(6.19) ) = K=I 1

( )2 q+1 L 2 (-1,1) 2q+3

where K is a constant depending on the normalization of the in (6.5),

(6.6) (its numerical value Is Immaterial in what follows). We can now prove

Theorem 6.1.

1. If fte T defined in (5.2) with Pi = O(q/d)-, c > 0, and

independent of d and q, then

K 1--* 1+ both as d-.0+ q-4

0
2. If, moreover, f Is such that

a) P1 1 0 0

P) *(r 1 , ud,q) < (VT' - 1)(1 - D -) for some c > 0, then
q

K1 1 -- l both as d--*0+ , q-•.

Proof: Assertion 10 follows Immediately with the definition (5.4) of K1 2

and the assumption on 1. To show 2", we note that i 1 1 Is as in (5.3),

however now with A determined from (6.12) Instead of Lemma 3.1. Using

(6.15), (6.17) in (6.12) we find
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Z (A q)2 (Al)-2

1 4 1-2#-*2 a
(A1 (q) d) 

2  d? 1+2*4*2 ( 2 -

a

and, from (6.18), (6.19) with *- (iV--) - 8, 0 < 8 < - 1,

1 4 8(2iT-8) (2q+3) 2-4

(A C(q)d) d2 (vy-)

d 2D
q

Hence
A I(q) S (I + Y'r)--•-1q A

and, using 8 - (vY' - 1) Dqi-. we find in (5.3)

A (q) S DF - ((2q+3) - 4)- "

This completes the proof. a

Therefore, under the assumptions made, Theorems 5.1 and 6.1 establish the

asymptotic and spectral exactness of the estimator 9 in (4.8).

7. A Dosteriori error estimation in the L2-norm

In the present section, we derive a-posteriori estimators for leln2

To this end we consider the bilinear form

(7.1) BI(uv) - j u Av dx

on H1 x where
d/2

H1 " ju * L?1O) u(xx,x 2 ,x3) dx3  -0 &.e. (xl,x 2 ) * ,
i-d/2

furnished with the norm
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lull [- lul 2dx2 -= lul 2

and where

1v * H (O) I AviL - 0 on R~t

V I L2 (a) < 8

with H defined In (A ), furnished with the norm9

lv12  (I IAvI 2 x}1/ 2

We note that locally v e H2 (Q) and hence a- is well defined. Furthermore,
8

it is also readily seen that Iol2 is a norm on H2

Theorem 7.1. The bilinear form BI(u,v) in (7.1) satisfies (3.1) and (3.2)

with C = = 1.

Proof. It is easy to see that (3.1) holds with C = 1. We will now estimate

y in (3.2). For given u e H1 , define s to be the solution of

(7.2) As - u in 0,

(7.3) s = 0 on r,

(7.4) s 0 onR

Since u * L2 (0), s obviously exists and is uniquely determined. Define

(7.5) z := 2 s(x'x2 'x3 ) dX3

Therefore

BIl(U, v) " uAz dx a lUlI2, Iz12 - lul 1

and (3.2) follows with 7 - 1. 0
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We turn now to the derivation of the a-posteriori estimator for *e(q)11

|le(q)l 2 We start from the characterization

(7.6) Bl(eI(q),v) - Ri(v)

with RI(o) as in (4.16). Using Theorem 7.1 gives

IRI (v 1 ) I

I L2(c) " sup lAvl 2

where the supremua is taken over all 0 * v e H n Hi which satisfy (2.13)

with b = 1. To estimate the supremum, we observe that any v e 2  can be

written In the form

(7.7) v I N ,x2 ,x3 ) a z Ik.k(xl'x2 )V*imI.7I
k,mZ1

where vk and *,, are as in (6.5)-(6.8). Further, we find that

(7.8) -AvI - blim pk(xlI'x2)Im--•)

k,mkl

where

b iks ' a ik A iks I - 1,2, k~z e N.

with AIkl as in (6.8). We insert (7.7) in R (v in (4.12) and find for

I - 2 with q - 2m that

H2(v 2 ) - Jr 2 (xlx 2 ){v 2 (xlx2 d/2) + v2 (xl,x 2 , -d/2) +

Z: A2,2 Jd/ v2(x,,x 2,x3)L2j(C-?)dx3}I dx~dx2
J-0 C/

where
-- 2

A2,2J a (4J+1)
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Next, using (7.7) yields

R2 (v 2 ) - 2 Z a2kI k ((-1)- T2 qt)

k,

where

T20t = 0 Vt

(7.9) a

1: (4J+1) L2 j(z) cos (&z) dz'2qt 2:" 2

where q = 2. > 0. Therefore

1 R2 (v2) 12 4 Z (2k) XZ9
k k

where

Ck - Zb 2 kt(A2 kd)-((-1)L- T2 qt)
t

and we estimate

C2 : (b2) 22 (Ak)-2
k~k t . c2ql ~i

Since from (7.7)

(7.10) IAv 122  dZ(b 2
L2 () i Z Iki

k,m

we find

I2 1R2 (v 2 )1 2

1el 2 12  -sup2
2 (a) V2  IAv2 1f2

2 d 3 Ir•L 2 (W ((_) T2 qd)2 (V-4

With an analogous reasoning for I - 1, we have shown
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Theorem 7.2. For I 1,2

le11L2() S -' d3/ 2 1r 2
L (A) iq Lu

where Eiq 2 • Z ((lit- Tlqj) 2 I1 t-

and T2q, Is as In (7.9), and for I 1, q = 2m+1,

T . (4J+3) r (z) sin (M z) d•lqt 2 1 J- L2j÷•( i•tZd-
J-0 -1

Remarkc 7.1.
= 1-

For q = 0, T 20t 0 and hence E20 x- (4) 1/180. For q > 0,

E q must be computed numerically in general.

B. Error estimation for laminated materials.

The analysis In the preceding sections carries over to the general

problem (1.1) with minor modifications which we will describe. To underline

the analogy, we assume that a basis 01 has been selected so that its span

coincides with that obtained from (2 6)-(2.9), and fturther, that for

J - 0,1,2,....

(8.1) *2 j(z) - * 2 j(-Z). *2j.1(z) - - 2j.(-z)

with
1

(8.2) b(z) dz 8 2

Jflz *J(z)*k(z) d- jk 2j+1

the normalization satisfied by Lj(z). Then we obtain, because of the way

span 40) was defined, that for i - 1,2
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R (v) r J rI(xlx 2 ){V(x,,x2 .d/2) ± v(xlx 2 ,-d/2)} dXldx

(8.3)

+ La j rI(x 1xx2 ) b -j Oj (7)v (x1 .x2,x3 ) dx dxldx2,

where "-" corresponds to I - 1, "+" to I - 2. Since RI(v) - 0 for all

v e S(q), we find from (8.2) that

alJ - ? *j(l) (2J+1) 0 S J I q

I -1 If J Is odd,

I = 2 if J is even.

The residuals rI are defined for I = 1,2 by

(8.4) rI (xx 2 ) :' fl(xlx 2 ) - a(l) 8n (x "x2 d/2)

Assuming P = {•}, we reason as In (4.18)-(4.20) and find[ j 2 2 su [v])2 dx,
(8.5) TO le< Ar2 sup ( ) dxd2

where

I1 vJ (xlX 2) :

q d 2x..
v(x Vx2 d/2) ± v(x VxV -d/2) - Ya IJ bt-2],j ~v dx3

J=o

a/ rev 21/2

where the supremum is taken over

M := L2 (w;H1 (-d/2,d/2) n {v J b -Jvdx 3 -0 a.e. (x,,x2 ) E .

Once more the variational problems sup 1 [v) admit unique maximizers vi
-
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which are independent of (xN,x 2 ) and satisfy the Euler Lagrange equations

(in the weak sense)

q

J=o
(8.6)

av i f {t1 x3 -d/2 1=1
x -3 -d/2 I = 2.

Defining

(8.7) )2 : d I 1, q O, even

S[-iq i = 2, q k 1, odd

where C is independent of d (and must generally be calculated

numerically), we have proved

Theorem 8.1. Under the assumptions of Theorem 4.1 we have, for 1 - 1,2,

(8.8) vroleil(q)flp < d Cjq J22 dxldX2

where V is as in Theorem 3.1 and rI as in (6.4).

The indicator functions are therefore now

(8.9) liq(X1,X2) = Vd C q V(xlx 2 ) rI(xtx 2 )

It can also be shuwn that exact analogs of Theorems 5.1 and 6.1 hold with

suitably modified constants D . We shall, however, not elaborate since the

details are completely analogous.

Remark 8.. In the practically important case that a(z), b(z) are piecewise

constant functions, C in (8.7) can be computed numerically by maximizing

*[v] over piecewise polynomials in one dimension (of sufficiently high

degree).
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9. Asimple exaunle of a-posteriori error estimation

We consider

(9.1) 0 = (-1,1) x (-d/2, d/2)

and select f+ - f- in (1.1) so that

u M u(x,y) - 2 cos (~X) cosh (~Y]
Then, for uniform model order q = 2m

u(q) - fx)~ ~)-Z XjCB(j~

J0o J-o

Then the vector x - (XO . . . . . . . . x. )T is determined from

where

a= 2z sinh r(j . e (1,..., 1)

and 1 1

AIj iJ L2L2j dz. Bj _ f l q j dz•
-11

Selecting the weight function V " 1, we find

fle(q)flj 2 4 cosh [j) _ ST)
and the estimator

m2
C2 d 2

i-i

Using a computer algebra system, we obtain

92 :- ,2 /l.( l•. 1- + d2 ! ÷"4)

Vaq
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where a is listed in Table 9.1.
q

q 240 360 936 1768 2856 4200 5800

Table 9.1. aq is the asymptotic expansion of the effectivity index.

Not only is C asymptotically exact as predicted in Theorem 5.1, but we

observe that with Q = 0 and =3 w/2 we have K2 1 = 1 in (5.3) and

in (5.4)

2 d2Xd2x
8{((2q+3)2 

- 41

and a comparison with Table 9.1 shows that for q > 2 this bound for

'22 is the best possible one.

Further, it is verified directly that V, - cos (ý x] In this case,

hence W in (6.16) is equal to zero, and by Theorem 6.1 we have in (5.3) that

(A^)2 < D I - 1,2,
i 2 q

i.e. 9 is spectrally exact for weight functions V satisfying

Q = O(qPd-P) , 0 S p < 1.

Finally, in Table 9.2 we present the asymptotic expansion as d--.0 of

d3 1r12
2  /ie(q) 12

L () L2(O)
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q d3 Ir12n /le(q) 12

__ _ L-(u) L(a)

0 180 + 15(wd)2 / 7 + O(d4)

2 630 + 315(xd)2 / 44 + O(d4)

4 2574 + 1287(wd)2 / 140 + O(d4)

6 6630 + 9945(wd)2 / 836 + O(d)4

Table 9.2. Asymptotics of the L2-residual versus

the L2-error for small q.

In each case the leading term agrees with the numerical value for E2 q

obtained from Theorem 7. 1 which shows the asymptotic exactness of the

estimator there for our model problem.

Further, in the unweighted case (i.e. V a 1) we find that f e T 1 with
d2

1= -VI, where A I Is the first eigenvalue of - d2 in (-1,1) with

boundary conditions u(±+) - 0. so that we have here

S2 2 1/F2

K1  1 < 1 S 1 + -d Dq) - K1 2

with D as in (5.5), i.e. for this problem the estimator (4.8) with (4.25)q

is asymptotically and spectrally exact.
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